
lable at ScienceDirect

Journal of Structural Geology 32 (2010) 1170e1184
Contents lists avai
Journal of Structural Geology

journal homepage: www.elsevier .com/locate/ jsg
Kinematic analysis of asymmetric folds in competent layers using mathematical
modellingq

J. Aller a,*, N.C. Bobillo-Ares b, F. Bastida a, R.J. Lisle c, C.O. Menéndez b

aDepartamento de Geología, Universidad de Oviedo, Jesús Arias de Velasco s/n, 33005 Oviedo, Spain
bDepartamento de Matemáticas, Universidad de Oviedo, 33007 Oviedo, Spain
c School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3YE, UK
a r t i c l e i n f o

Article history:
Received 18 December 2009
Received in revised form
28 June 2010
Accepted 27 July 2010
Available online 5 August 2010

Keywords:
Folding
Strain
Mathematical modelling
Recumbent folds
q The program code (“FoldModeler”) can be found
http://www.geol.uniovi.es/Investigacion/OFAG/Foldtea
* Corresponding author. Fax: þ34 98 510 3103.

E-mail address: aller@geol.uniovi.es (J. Aller).

0191-8141/$ e see front matter � 2010 Elsevier Ltd.
doi:10.1016/j.jsg.2010.07.008
a b s t r a c t

Mathematical 2D modelling of asymmetric folds is carried out by applying a combination of different
kinematic folding mechanisms: tangential longitudinal strain, flexural flow and homogeneous defor-
mation. The main source of fold asymmetry is discovered to be due to the superimposition of a general
homogeneous deformation on buckle folds that typically produces a migration of the hinge point.
Forward modelling is performed mathematically using the software ‘FoldModeler’, by the superimpo-
sition of simple shear or a combination of simple shear and irrotational strain on initial buckle folds. The
resulting folds are Ramsay class 1C folds, comparable to those formed by symmetric flattening, but with
different length of limbs and layer thickness asymmetry. Inverse modelling is made by fitting the natural
fold to a computer-simulated fold. A problem of this modelling is the search for the most appropriate
homogeneous deformation to be superimposed on the initial fold. A comparative analysis of the irro-
tational and rotational deformations is made in order to find the deformation which best simulates the
shapes and attitudes of natural folds.

Modelling of recumbent folds suggests that optimal conditions for their development are: a) buckling
in a simple shear regime with a sub-horizontal shear direction and layering gently dipping towards this
direction; b) kinematic amplification due to superimposition of a combination of simple shear and
irrotational strain with a sub-vertical maximum shortening direction for the latter component. The
modelling shows that the amount of homogeneous strain necessary for the development of recumbent
folds is much less when an irrotational strain component is superimposed at this stage that when the
superimposed strain is only simple shear. In nature, the amount of the irrotational strain component
probably increases during the development of the fold as a consequence of the increasing influence of
the gravity due to the tectonic superimposition of rocks.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Kinematic studies of folding are concerned with different types
of strain patterns that appear in folded layers and the geometrical
evolution of the folded layers from the initial, undeformed stage to
the final fold. Kinematic folding mechanisms can be considered to
be the theoretical tools that can be used in this analysis; they define
rules that determine the displacements to be produced and the
final strain pattern inside the folded layers. A reasonable starting
point for establishing basic foldingmechanisms is the experimental
production of folds, comparable to natural ones. For example, the
in the following web page:
m.html

All rights reserved.
classical folding experiments by Kuenen and de Sitter (1938) using
sheets of paper and rubber revealed the operation of the mecha-
nisms that we now refer to as the flexural and tangential longitu-
dinal strain mechanisms respectively. From this type of
experiments it is possible to define the kinematic mechanisms as
theoretical idealizations that can be mathematically analysed. In
this way, applying the conditions required by every mechanism it is
possible, from an initial configuration of a layer, to model theo-
retically the geometry of a folded layer and its strain pattern. The
folding necessarily involves heterogeneous deformation; however,
the superimposition of a homogeneous strain during folding can
significantly modify the geometry of folds and their strain pattern,
and this type of modification can be included as a folding mecha-
nism in its own right.

An interesting aspect of folding kinematics is concerned with
the development of asymmetric folds. According to the definition
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given by most authors, a fold is asymmetric when it lacks bilateral
symmetry about the axial plane (Turner andWeiss, 1963, p. 122; De
Sitter, 1964, p.272; Whitten, 1966, p. 601; Ramsay, 1967, p. 351).
Most of the folds found in rocks are asymmetric and in many cases
the degree of asymmetry is very high. Good examples are the major
recumbent folds common in the hinterland of orogenic belts, the
folds developed in ductile shear zones, and parasitic folds devel-
oped on the limbs of major folds. These examples illustrate the
importance of gaining understanding of the folding mechanisms
operating during the formation of asymmetric folds in order to
further our knowledge of orogenic deformation. Most of the
available studies on natural asymmetric folds place special
emphasis on the shape and asymmetry of the folded surfaces or
layers, but the final strain patterns or the characteristics of the
progressive deformation in these folds are poorly known.

The aim of this paper is to study some general aspects of the
kinematics of asymmetric folds in competent layers. Theoretical
folds are modelled using tangential longitudinal strain, flexural
flow and homogeneous strain. The asymmetry can be introduced
via all three mechanisms. Superimposition on pre-existing folds of
a general homogeneous strain, with final principal directions freely
chosen will be the main source of asymmetry in our models. This
modelling yields information about the final strain distributions
and the progressive deformation in asymmetric folds (forward
problem), and the potential for ascertaining the kinematic mech-
anisms that operated in specific natural asymmetric folds (inverse
problem), by comparison of the geometry of these folds with
theoretically modelled folds. A special attention is devoted to large
recumbent folds, because they are key pieces for understanding of
the structure of orogens.

The analysis is two-dimensional, considering strain in the
profile plane of the folded layer. Application of the theoretically
modelled folds to the analysis of the mechanisms that operate in
natural folds is limited by the availability of strain measurements in
the rocks. Fortunately, detailed information on the natural fold
geometry and the cleavage pattern provides very useful data that
can be related to the strain state and the kinematic mechanisms
involved in the development of asymmetric folds.

2. On the description of asymmetric folds

A qualitative description of fold asymmetry was made by
Ramsay (1967, pp. 351e352) using the letters M (symmetric), S or Z
(asymmetric), in such a way that the shape of the letter describes
the shape of the fold. This method is useful for the mapping of
major structures from parasitic folds. From a quantitative point of
view, Loudon (1964) and Whitten (1966) proposed the use of the
third statistical moment of the orientation distribution of the
normals to the folded surface profile to express the asymmetry of
folds. Since the asymmetry depends on the relative length of the
Fig. 1. (a) Parameters to characterise asymmetry in folded surfaces. The normalized area A fo
(gray) of the chevron fold with the same x0 and y0 parameters. (b) Thickness ratio (Ta) as a
fold limbs (Ramsay, 1967, p. 351), a simple measure of the asym-
metry of a fold is the ratio between these lengths. Tripathi and
Gairola (1999) define the degree of asymmetry of a folded surface
as the sum of two parameters, one depending on the difference in
amplitude and other depending on the difference in shape. A
problem with this method is that this parameter does not express
the extent to which the asymmetry is due to differences in shape or
differences in amplitude. In order to represent graphically the fold
asymmetry in a 2D coordinate system, it is necessary to describe
this geometrical feature using only two parameters. A complete
description of the asymmetry of folded surfaces is not really
possible with only two parameters; in fact, Twiss (1988) proposed
a classificationwhich requires six parameters for profiles of general
asymmetric folded surfaces. Nevertheless, the most relevant
features of this asymmetry can be characterised by the following
parameters (Bastida et al., 2005; Lisle et al., 2006):

Shape asymmetry : Sa ¼ AF=AB (1)

Amplitude asymmetry : Aa ¼ y0F=y0B (2)

where AF and AB are the respective normalized areas (Bastida et al.,
1999) of the forelimb and the backlimb (defined as the steeper and
gentler limb respectively), and y0F and y0B are the y0 parameters of
the forelimb and the backlimb, respectively (Fig. 1a). The plot of
these parameters in a graph of Sa against Aa for all the folds
of a specific set, allows the visualization of the variation in asym-
metry of these folds.

In order to analyse the asymmetry of the folded layer,
comparison of the curves representative of the two limbs in the
classifications of Ramsay (1967, pp. 359e372), Hudleston (1973) or
Treagus (1982) can give a qualitative idea of the shape asymmetry.
A simple parameter to quantify this aspect of asymmetry is the
thickness asymmetry (Ta) (Fig. 1b), defined as the ratio between the
orthogonal thickness of the forelimb and that of the backlimb for
the maximum dip in the Ramsay’s classification.
3. Modelling asymmetric folds: preliminary considerations

For the theoretical study of folding kinematics in individual
competent layers it is opportune to use an auxiliary reference line,
termed the ‘guideline’, which is usually, but not necessarily, posi-
tioned midway between the layer boundaries in the initial config-
uration. The guideline facilitates the monitoring of the layer
geometry during folding. To analyse the strain in a folded layer
profile it is necessary to choose a function to describe the formof the
guideline. In this paper we will use functions of the conic section
family (Aller et al., 2004). The conic sections have important
advantages over other families of functions. They offer a good fit to
themost common fold shapes andhavefinite curvature at all of their
r a fold limb is the ratio between the area A (lined) defined by the limb and the area A’
measure of asymmetry in folded layers.
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points, a continuous change of curvature, a curvature extreme value
in the apex, and at least one axis of symmetry. An important addi-
tional advantage of the conics is that affine transformations
(homogeneous deformation) map ellipses to ellipses, parabolas to
parabolas and hyperbolas to hyperbolas (Brannan et al., 1999, p. 85).
This characteristic propertyof the conicsmakes it possible toanalyse
cases in which a general homogeneous strain operates during the
development of asymmetric folds and modifies the geometry of
the folded surface profile. In these cases, if the curves that describe
the folded guideline before and after strain belong to different
families, the change in shape is very difficult to describe, and
a thornyproblemarises in the analysis of the folding kinematics. The
conics are simple curves that do not pose this problem, and this
makes them our preferred choice.

In the case of symmetric folds it is only necessary to analyse
a single limb for each fold, so that the guideline is defined by
a sector of a conic in an interval [0, x0], where x0 is the limb width
(Bobillo-Ares et al., 2004). However, for the theoretical modelling of
asymmetric folds, both limbs need to be considered. In this case,
the two limbs need to be modelled together by a single conic
section, since the hinge point can migrate along the guideline, and
consequently a material point can migrate from one limb to the
other during the development of the fold. The coordinate origin is
located at the vertex (hinge point) of the conic section and the folds
are modelled as synforms with the coordinate axes as shown in
Fig. 1a. This x-axis is considered as horizontal reference datum for
the measurement of line inclinations and layer dips in the analysis.
The considered part of the conic is characterised by the eccentricity,
a scale factor, and the interval over which it is defined. Alternatively
it can be useful to use, instead of the scale factor, a normalized
amplitude (or aspect ratio) h of the right limb, defined as the ratio
between the height and the width of this limb (y0B/x0B; see Fig. 1a).

One result of the kinematic analysis of asymmetric folds is to
obtain the strain distribution in the folded layer. For the application
of this analysis to natural folds, we assume that the major axis of
the strain ellipse has the direction of the cleavage trace on the fold
profile, as commonly suggested, at least as an approximation (e.g.,
Siddans, 1972; Wood, 1974; Passchier and Trouw, 2005, p. 94). In
agreement with the available data (e.g., Southwick, 1987; Passchier
and Trouw, 2005, p. 95), we assume that cleavage development
requires a minimum shortening normal to the cleavage of 30%
(R ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
l1=l2

p
z2 for isochoric deformation). The presence of

cleavage is necessary for an adequate kinematic interpretation of
natural asymmetric folds.

4. Kinematic mechanisms producing asymmetric folds:
mathematical modelling

Considering individual competent layers and assuming folding
as a result of a single progressive deformation episode, we can
distinguish two sources of asymmetry in folds: a) asymmetry
induced during the active folding, and b) asymmetry induced by
superimposition of homogeneous deformation on pre-existing
folds.

4.1. Asymmetry induced during the active folding

Two main mechanisms can be considered during this folding
stage.

4.1.1. Tangential longitudinal strain (TLS) (or neutral surface
folding)

This mechanismwas introduced early in structural geology (e.g.,
Ickes, 1923). It is the mechanism assumed in the basic buckling
theory of competent members (elastic or viscous) (e.g., Ramberg,
1960; Biot, 1961; Currie et al., 1962). Two modes of this mecha-
nism have been considered: equiareal tangential longitudinal strain
(ETLS) and parallel tangential longitudinal strain (PTLS), which
involves area change. The former has been defined by Ramsay
(1967, p. 397) and it involves no area change; it does not
conserve exactly the orthogonal thickness of the folded layers
(Bobillo-Ares et al., 2000). The latter is usually assumed in buckling
theory and it has been considered in the analysis of natural folds by
several authors (Hudleston and Holst, 1984; Hudleston and Tabor,
1988; Hudleston and Srivastava, 1997; Ormand and Hudleston,
2003; Bobillo-Ares et al., 2006; Lisle et al., 2009); it produces
perfect parallel folds.

4.1.2. Flexural flow (FF)
The term “flexural flow”was introduced in structural geology by

Donath (1963) and Donath and Parker (1964) to define a folding
mechanism that involves a flow within individual layers giving rise
to a thickening of the hinge zone with respect to the limbs.
Subsequently, Ramsay (1967, p. 392) redefined this mechanism as
due to a continuous heterogeneous simple shear parallel to the
boundaries of the layer so that the shear is null at the hinge points
and increases in absolute value as the dip of the limb increases; it
gives rise to parallel folds in which the area on the fold profile and
the arc length of the boundaries or the fibres parallel to them are
conserved. This is the sense given here to this mechanism. The
deformation involved in FF is well known in strength of materials
and it was described as the deflection of a beam or plate produced
by shearing stresses parallel to their boundaries (e.g., Timoshenko,
1940, pp. 170e174). Some kinematic or mechanical models have
been proposed to produce folds, mainly chevron folds, by FF
(Smythe, 1971; Ramsay, 1974). Nevertheless, some authors (Price
and Cosgrove, 1990, p. 250; Weijermars, 1992; Hudleston et al.,
1996) have suggested that this mechanism requires a high
mechanical anisotropy and Hudleston et al. (1996) have discussed,
using finite-element models, the viability of FF in nature. They
concluded that it is unlikely that competent layers would be
sufficiently anisotropic as to develop a significant component of
flexural fold during folding. Toimil and Fernández (2007), analysing
by computer the kinematics of symmetric natural folds in compe-
tent layers, conclude that FF is much less important than TLS and it
can occur after the latter as a small component due to geometrical
incompatibilities generated during TLS. Bastida et al. (2007)
mathematically modelled the kinematics of chevron folds and
concluded that, in general, FF is necessary at the last stage of
buckling, although the increment of folding due to this mechanism
can be very small. In contrast with the subsidiary character of the FF
suggested in these papers, Ormand and Hudleston (2003), ana-
lysing the meso and microstructures in two folds developed in
single competent layers of limestone, inferred that they were
formed by asymmetric FF. Given this background, although FF could
be a subordinate contributor, it is used to model asymmetric folds
in this study.

Asymmetry produced in folds during the initiation and devel-
opment of active folding has been analysed from a mechanic point
of view by several authors (Ghosh, 1966; Price, 1967; Treagus, 1973;
Anthony and Wickham, 1978; Manz and Wickham, 1978; Frehner
and Schmalholz, 2006; Treagus and Fletcher, 2009) and it has
been attributed to the action of a principal compressive stress
oblique to the competent layer. On the other hand, experimental or
finite-element results show that the asymmetry of the folds is small
or even null (Ghosh, 1966; Anthony and Wickham, 1978; Manz and
Wickham, 1978).

Modelling of equiareal and parallel TLS mechanisms is per-
formed in this paper using the geometrical transformations
developed by Bobillo-Ares et al. (2000, 2006) and modelling of FF
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mechanism is carried out in the same manner as in Bastida et al.
(2003). The asymmetry induced for these mechanisms can be
simulated theoretically by positioning the hinge points of the fol-
ded layer boundaries so that they do not coincide with points that
are equidistant from the ends of the layer. Asymmetries in the
strain distribution due to flexural flowwith the pin line on a limb of
the fold have been proposed by several authors (Geiser et al., 1988;
Fisher and Anastasio, 1994; Ormand and Hudleston, 2003), but
have not been considered in the present study.

4.2. Asymmetry induced by superimposition of homogeneous
deformation on pre-existing folds

Following the pioneering analyses of flattened folds (Ramsay,
1962, 1967, pp. 411e415; De Sitter, 1964, pp. 274e277;
Mukhopadhyay, 1965), homogeneous strain superimposed on pre-
existing folds has been widely considered to be a common
mechanism for explaining Ramsay class 1C folds. In general, this
flattening strain will bring about an asymmetry in a pre-existent
fold when the axes of superimposed strain ellipse are oblique to the
axial plane. Two categories of superimposed oblique homogeneous
strain with different geological significance can be distinguished:

Irrotational deformation (sensu Ramsay, 1967, pp.60e61). This
was described by Hudleston (1973) as oblique flattening. The strain
involved can be pure shear or irrotational strainwith area change. It
is defined by the angle between the major axis of the strain ellipse
and the axial surface trace of the pre-existing fold and the principal
strain values l1 and l2 (or one of them and the area change value).

Rotational deformation (sensu Ramsay, 1967, pp.60e61). This is
defined by the four components of the corresponding deformation
gradient. Among the infinite number of possible superimposed
strains, the following have been considered of special geological
relevance:

- Simple shear. This has been considered as a suitable folding
mechanism in several geological situations (Hudleston, 1977;
Sanderson, 1979; Cobbold and Quinquis, 1980; Ramsay, 1980;
Ramsay et al., 1983; Ramsay and Huber, 1987, pp. 597e598;
Srivastava and Srivastava, 1988; Casey and Dietrich, 1997; Ez,
2000; Harris et al., 2002; Carreras et al., 2005; Alsop and
Carreras, 2007). This type of homogeneous deformation has
the advantage of accommodating a continuous strain gradient
across the shear plane.

- Combination of homogeneous simple shear and irrotational
deformation. This has been considered by many authors as
a deformation history common in several geological situations
in which folds can be kinematically amplified (Ramberg, 1975;
Ramsay, 1980; Sanderson, 1982; De Paor, 1983; Ridley and
Casey, 1989; Fossen and Tikoff, 1993; Simpson and De Paor,
1993; Tikoff and Fossen, 1993, 1996; Carreras et al., 2005).

The irrotational component can have its direction of maximum
stretch parallel or perpendicular to the shear direction of the simple
shear and it can involve area change or no area change (pure shear)
on the fold profile. Taking into account that the application order of
the deformations has an influence on the final result, there are
three main possibilities: simple shear followed by irrotational
strain, irrotational strain followed by simple shear and simulta-
neous simple shear and irrotational strain. Some authors have
discussed the simultaneous case (Fossen and Tikoff, 1993; Tikoff
and Fossen, 1993; Merle, 1994). From the study of Ramberg
(1975), and for a reference system with the x-axis in the shear
direction of the simple shear component, these authors have
obtained the following matrix for the material deformation
gradient:
G ¼
 
k1 g k1�k2

lnðk1=k2Þ
0 k2

!
: (3)

The elements of the leading diagonal describe the components of
irrotational strain and the off-diagonal non zero element describes
the rotational component of the deformation. When k1 ¼ k2 ¼ 1,
this element is not defined, but when k1 is very slightly different
than k2 and than 1, the deformation is a simple shear; g ¼ 0 implies
pure shear. A simple ad hoc derivation of matrix (3) is given in
Appendix A. For the mathematical modelling of this mechanism,
coordinates of points of the buckled layer must be left-hand
multiplied by the matrix (3) to obtain the coordinates of points of
the layer configuration after the superimposition of the homoge-
neous deformation.

The superimposition of a general homogeneous deformation on
pre-existing folds can involve a migration of the hinge point along
the guideline. Therefore, in order to obtain the equation of the conic
that describes the new guideline it is necessary to make a coordi-
nate transformation to take the coordinate origin to the new hinge
point. This transformation is not a trivial task and it has been
included in Appendix B.

By analysing the results of the superimposition of deformations
given by different forms of the matrix (3) on the same pre-existing
fold we can see that it is possible to obtain folds with the same
shape but different attitudes, i.e., folds that only can be distin-
guished by a different value of the rotation of the principal strain
direction.
5. Computer methods for modelling asymmetric folds

A new version of the ‘FoldModeler’ program (first presented by
Bobillo-Ares et al., 2004) is used in this study to model asymmetric
folds. This program is written in the MATHEMATICA� environment,
and it permits the modelling of folds involving the mechanisms
considered above: TLS (ETLS and PTLS), FF and homogeneous
deformation (Bobillo-Ares et al., 2004). These mechanisms can be
superimposed in any order to produce a fold in the manner
described by Bastida et al. (2003) and Bobillo-Ares et al. (2004) for
symmetric folds. The main difference is that in the case of asym-
metric folds the homogeneous deformation has a general character,
so that it can be rotational or irrotational and its principal directions
can have any orientation with respect to the geometrical elements
of the pre-existent fold.

Theoretical modelling of a combination of kinematic mecha-
nisms is made by a sequence of successive folding steps. The first
stage in the computer modelling is to define the initial configura-
tion of the layer profile to be folded. To make it, the profile is
divided in a net of parallelograms so small as to allow the
assumption of homogeneous strain within them. The net nodes
define the points to be transformed by the different folding
mechanisms, allowing the analysis of the strain in the folded layer.

Once the initial layer is defined, it is deformed by applying
a number of folding steps. Every step corresponds to a specific
mechanism and involves the application of the appropriate trans-
formation relations to the nodes. Therefore, definition of a folding
step requires specification of the folding mechanism involved and
the changes that the stepmust produce in the guideline parameters
(aspect ratio and shape variations).

Computer modelling of a general homogeneous deformation
superimposed on folds involves the introduction of folding steps
with the matrix of the corresponding material deformation
gradient, whose four elements must be specified. In order to
simplify this task and to ease interpretation, it is convenient to form
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this matrix by a superimposition of others for simple deformations,
such as the following:

- Simple shear. This can be imposed with any amount and in any
direction. Its introduction requires specification of the value of
the shear strain g, and the shear direction.

- Irrotational strain. This is a general irrotational strain that can
be applied with any amount and area change, and with prin-
cipal directions freely selected. To apply this strain type,
specification of the maximum principal stretch,

ffiffiffiffiffi
l1

p
, the cor-

responding principal direction and the area change (final area/
initial area) is required.

- Area change. This can be included as an independent element
introducing a scale factor that multiplies the previous area.

- Rigid body rotation. This can be included as an independent
element by specifying the rotation angle.

The above method produces deformations of very general
character by superimposition of simple elements. On the other
hand, by superposing very small increments it is also possible to
model the simultaneity of two or more types of homogeneous
deformation.

As a result of the superimposition of a finite number of steps,
folds formed by a combination of several folding mechanisms are
simulated. Among the information that FoldModeler provides we
can mention the following:

1. A visual display of the folded layer, showing the net of
deformed quadrilaterals, the distribution of the strain ellipses
and their axes, and a variation in the gray level depending on
the R-value ðR ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
l1=l2

p
Þ of the strain ellipse.

2. qea graph. Curves showing the variation of the long axis
inclination (q) of the strain ellipse (measured anticlockwise
from the positive x-axis between 0 and 180�) as a function of
the layer dip (a) for the inner and outer arc of the folded layer.

3. Rea graph. Curves showing the variation of R as a function of
the layer dip (a) for the inner and outer arc of the folded layer.

4. Ramsay’s classification of the folded layer and the curve of the
squared orthogonal thickness t02a versus sin2a.
Fig. 2. Examples of asymmetric folds obtained with ‘FoldModeler’ and formed by flexural fl
ratio for the right limb h ¼ 1. Note the bulge in the inner arc of the hinge zone of the equ
5. Parameters s1 and s2 derived from the curve t02a versus sin2a
(Bastida et al., 2005).

6. The bulk shortening associated with folding.
7. The eccentricity of the final conic section of the guideline and

the aspect ratio of each of the two limbs.
8. A graph describing the guideline curvature variation through

the folded layer.
9. The ratio between the layer thickness at the hinge point (t0)

and the amplitude of the outer arc (yoa).

6. Forward modelling of asymmetric folds

Combining the kinematic mechanisms included in the ‘Fold-
Modeler’ program, we can model countless folds with different
strain distributions. However, in this chapter we have chosen a few
examples that we consider relevant from a geological point of view.
Firstly, we consider briefly the modelling of asymmetric folds by
the basic mechanisms of TLS (ETLS and PTLS) and FF. Later, we
consider some superimpositionmodels of a homogeneous strain on
folds formed by TLS and/or FF.

6.1. Flexural-flow and tangential longitudinal strain

Unlike the modelling of these mechanisms in symmetric folds,
in the case of asymmetric folds the two parts of the conic section
representing the limbs will in general have different lengths and
amplitudes and they will be determined for intervals of different
length on the x-axis. In the computer modelling, these intervals are
defined by specifying the number of quadrilaterals that must
appear at each side of the hinge point in the initial configuration.
Examples of asymmetric folds formed by FF and ETLS are shown in
Fig. 2. In folds modelled by flexural flow, the pin line lies along the
axial trace of the fold.

6.2. Superimposed homogeneous deformation

Among the infinite possibilities to make this superimposition,
we have chosen two types of rotational homogeneous deformation
that, as stated above, are geologically relevant. Nevertheless, we
will analyse below the factorization of any finite rotational
ow and equiareal tangential longitudinal strain with a parabolic guideline and aspect
iareal tangential longitudinal strain fold.
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deformation in an irrotational strain followed by a rotation. This
analysis allows obtaining the irrotational strain that can produce
a fold with the same strain pattern originated by a specific rota-
tional deformation.

6.2.1. Folds formed by superimposition of homogeneous simple
shear on buckle folds

The geometry of folds formed by superimposition of homoge-
neous simple shear on folds formed by layer parallel shortening,
flexural flow and/or tangential longitudinal strain mainly depends
on the orientation of the shear direction with respect to the axial
surface, the shear strain value g (or the R-value of the super-
imposed strain ellipse) and the amplitude of the pre-existing fold.
Two examples of the progressive development of these folds can be
seen in Figs. 3 and 4. An essential feature of the folds obtained is
that the migration of the hinge zone of the buckle fold towards one
of the limbs during the shearing produces some characteristic
features on this limb: a) a minimum of strain ratio, R, in flexural
flow folds and in the outer arc of tangential longitudinal strain folds
and a maximum of R in the inner arc of tangential longitudinal
strain folds; b) as shown by the qea curves, there exists a charac-
teristic tendency to develop a parallelism between themajor axis of
strain ellipse and the axial plane with increasing g, but the limb
towards which the hinge migrates shows a resistance to develop
this pattern in flexural folds and in the outer arc of tangential
longitudinal strain folds, whereas the pattern is readily formed in
the inner arc of tangential longitudinal strain folds.

The folds developed by superimposition of homogeneous
simple shear on parallel or sub-parallel folds are class 1C, and they
can be distinguished from parallel folds flattened by an irrotational
Fig. 3. a) Folds obtained with ‘FoldModeler’ for superimposed simple shear on flexural flow f
are trajectories of the maximum finite elongation obtained for the numerical folds. Dark ci
progressive shearing. b) qea curves for the initial and the sheared folds. c) Rea curves for
strain with maximum shortening direction perpendicular to the
axial surface, by the different length of the t0a � a curves of the
Ramsay’s classification of the two limbs or by the thickness
asymmetry (Ta). For identical starting folds, another difference is
the final attitude of the folds. Comparison of folds developed by
superimposition of homogeneous simple shear on parallel folds
with those developed by oblique flattening of parallel folds is
complex and it is analysed below in the inverse modelling section.
Assuming a horizontal shear direction, limbs of the pre-existing
folds dipping opposite to the shear direction (considered on the top
of the deformed body) will undergo a progressive thinning as the
shear strain g increases, and limbs of the previous folds dipping in
the shear direction will first undergo thickening and later, if g

reaches a sufficiently high value, the layer acquires a dip opposite to
the shear direction and progressive thinning occurs.

The fold prior to the superimposition of the homogeneous strain
can be formed by a combination of layer parallel shortening, FF and/
or TLS. For high g values, it can be difficult to distinguish the folds
produced by FF or TLS mechanisms acting in early stages of folding,
but if the g value is not high, the initial operation of the FF or TLS
can be distinguished. Among other differences, FF gives rise to folds
with the same qea and Rea curves for the inner and outer arcs,
whereas TLS produces different curves for both arcs (Figs. 3 and 4).

6.2.2. Folds formed by a combination of simultaneous
homogeneous simple shear and irrotational strain on buckle folds

In this case, many possible combinations of the two compo-
nents of the homogeneous deformation are possible. A model with
the direction of maximum stretch of the irrotational component
coinciding with the shear direction of the simple shear component
olds with a parabolic guideline and aspect ratio h ¼ 1. Lines intersecting the fold profile
rcles show the migration of the hinge zone of the initial fold along the forelimb with
the initial and the sheared folds.



Fig. 4. a) Equiareal tangential longitudinal strain folds with a superimposed simple shear modelled with ‘FoldModeler’. The initial buckling folds have a parabolic guideline and
aspect ratio h ¼ 1. Lines intersecting the fold profile are trajectories of the maximum finite elongation obtained for the numerical folds. Dark circles show the migration of the hinge
zone of the initial fold along the forelimb with progressive shearing. b) and c) qea curves for the outer and the inner arc of the initial and the sheared folds. d) and e) Rea curves for
the outer and the inner arc of the initial and the sheared folds.
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is shown in Fig. 5. As a general tendency, for the same final
superimposed strain, folds formed by a superimposition on buckle
folds of a combination of horizontal simple shear and irrotational
strain with horizontal direction of maximum stretch have a gentler
dipping axial plane and a thicker forelimb than folds formed by
a superimposition of horizontal simple shear on buckle folds.
Another model with the direction of maximum stretch of
the irrotational component perpendicular to the shear direction of
the simple shear component is shown in Fig. 6. In general, folds
formed in this way have a steeper axial plane and a more
symmetric character than folds formed by a superimposition of
horizontal simple shear on buckle folds.
7. Inverse modelling of asymmetric folds

The aim of the inverse modelling is to determine the kinematic
mechanisms that operated in a specific asymmetric fold. It requires
fitting this fold, and the corresponding fea and Rea curves, to
a fold simulated using ‘FoldModeler’. To make this task, it is
necessary to collect all relevant information about the natural fold,
as geometry of the folded surfaces and layers, the pattern of
cleavage distribution, vorticity gauges, strain measures if possible
and observations on structures related to folding mechanisms
(wedge-like gashes opening towards the outer arc in the hinge
zone, a cleavage better developed near the inner arc of the hinge



Fig. 5. a) Flexural flow fold with a parabolic guideline and aspect ratio h ¼ 1. Lines intersecting the fold profile are trajectories of the maximum finite elongation. b) and c) The dark
gray folds are numerical folds obtained with ‘FoldModeler’ for a simultaneous superimposition of simple shear and pure shear with a vertical maximum shortening direction on the
fold in (a). R of the pure shear component (R ¼ k1/k2) is equal to the square root of the axis ratio RH of the strain ellipse of the total homogeneous strain. The dark circles show the
migration of the hinge zone of the initial fold along the backlimb with progressive shearing. RH is 5.83 in (b) and 17.54 in (c). These values correspond to the R-values for g ¼ 2 and
g ¼ 4, respectively. Folds corresponding to the superimposition of simple shear deformation with g ¼ 2 and g ¼ 4 on the fold in (a) are shown in a light gray pattern to allow
comparison. d) Black curves are qea curves for the initial fold and the folds formed by simultaneous superimposition of pure shear and simple shear. RH is shown on the curves. fea

curves for folds formed by a superimposition of simple shear with the same RH value are shown in gray to allow comparison. e) Black curves are Rea curves for the initial fold and
the folds formed by simultaneous superimposition of pure shear and simple shear. Rea curves for folds formed by a superimposition of simple shear with the same RH value are
shown with a dashed line to allow comparison. RH is shown on the curves.
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zone than in the rest of the hinge zone, the existence of a bulge in
this inner, etc.).

An important problem for this modelling is that the fold attitude
prior to the superimposition of the homogeneous deformation is
not known in nature. For an asymmetric fold formed by a combi-
nation of layer parallel shortening, TLS and/or FF plus a super-
imposed homogeneous deformation, although the final position of
the fold is known, there are infinite sequences of kinematic
mechanisms that can fit the fold. These sequences produce the
same strain ellipse and the same final geometry; they only differ in
the rotational component. Hence, they correspond to different
initial positions of the fold prior to the deformation superimposi-
tion. Fortunately, all the possibilities are not equally probable and
the homogeneous deformation more appropriate can be chosen in
many cases from the analysis of field data. For example, we can
suppose in most cases that the vergence is in the same direction
during the whole development of the fold, and cases in which the
vergence of the fold prior to the superimposition is opposite to the
vergence of the final fold can be ignored.

The easiest fit of a natural fold with homogeneous super-
imposed deformation is using an irrotational strain. From this
initial fitting, other fits are then sought from a deformation con-
sisting of a combination of simple shear and irrotational strain. This
analysis is based on the following fundamental theorem (Truesdell
and Toupin, 1960, p. 274): The homogeneous deformation of a body
may be regarded as resulting from a translation, a rigid rotation of
the principal axes of strain, and stretches along these axes. Hence,
in the analysis it is useful to consider a combination of simple shear
and irrotational strain, with the shear direction of the simple shear
component in coincidence with a principal direction of the
irrotational strain component, as the product of an irrotational
strain and a rigid rotation; i.e.:

r+f ¼ g; (4)
where r is the rotation, f is thematerial deformation gradient tensor
of the irrotational strain, and g is the material deformation gradient
tensor of the combination of simple shear and irrotational strain
(with respect to a reference system with the x-axis in the shear
direction of the simple shear component, g is given by the matrix
(3)). If we determine the principal directions and values of the
Green’s strain tensor corresponding to f from the fit of the natural
fold, determine the area change and assign values to k1 in matrix
(3), we can determine the rotation angle b, the g value in matrix (3),
and the angle q that defines the shear direction of the simple shear
component. A detailed analysis of equation (4) with the calcula-
tions to obtain the above parameters is given in Appendix C.

An example of fitting a natural fold using this method is shown
in Fig. 7. The fold is located in the southern Pyrenees and devel-
oped in Eocene sandstones and mudstones in turbiditic facies; its
axial plane dips 57� southwards. A good fit of this fold is obtained
with a first folding step of isochoric layer parallel shortening
ð
ffiffiffiffiffi
l2

p
¼ 0:7Þ, a second step of ETLS with an aspect ratio of 0.67,

and a third step of flattening (pure shear with
ffiffiffiffiffi
l2

p
¼ 0:84) with

a
ffiffiffiffiffi
l1

p
-direction making an angle of �20� with the fold axial trace.

However, this fold forms part of a long train of folds developed in
the hanging wall of a major thrust (Gavarnie thrust) (Teixell,
1992). Folds and thrust verge southwards towards the foreland.
Hence, this train probably resulted from a rotational bulk defor-
mation regime. Assuming a regime of simple shear strain and
using the equations deduced in Appendix C, the equivalent fit



Fig. 6. a) Flexural flow fold with a parabolic guideline and aspect ratio h ¼ 1. Lines intersecting the fold profile are trajectories of the maximum finite elongation. b) and c) The dark
gray folds are numerical folds obtained with ‘FoldModeler’ for a simultaneous superimposition of simple shear and pure shear with a horizontal maximum shortening direction on
the fold in (a). R of the pure shear component (R ¼ k1/k2) is equal to the square root of the axis ratio RH of the strain ellipse of the total homogeneous strain. The dark circles show the
migration of the hinge zone of the initial fold along the backlimb with progressive shearing. RH is 5.83 in (b) and 17.54 in (c). These values correspond to the R-values for g ¼ 2 and
g ¼ 4, respectively. Folds corresponding to the superimposition of simple shear deformation with g ¼ 2 and g ¼ 4 on the fold in (a) are shown in a light gray pattern to allow
comparison. d) Black curves are qea curves for the initial fold and the folds formed by simultaneous superimposition of pure shear and simple shear. RH is shown on the curves. qea
curves for folds formed by a superimposition of simple shear with the same RH value are shown in gray to allow comparison. e) Black curves are Rea curves for the initial fold and
the folds formed by simultaneous superimposition of pure shear and simple shear. Rea curves for folds formed by a superimposition of simple shear with the same RH value are
shown with a dashed line to allow comparison. RH is shown on the curves.
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involves a foreland-directed shear strain with g ¼ 0.35 and a shear
direction plunging north 17�. Once the shear direction, the g value
and the present dip of the fold axial plane are known, the dip of
the axial plane prior the superimposition of the simple shear can
be determined; this dip was about 66� northwards and it could be
produced, in a bulk simple shear regime, by buckling of layers
oblique to the shear direction.

8. Application to recumbent folds

Large recumbent folds form an important feature of many
orogenic belts, but their origin and development are not well
understood. Several authors have explained or developed experi-
mentally recumbent folds by buckling in a regime of simple shear
(Ghosh, 1966; Ramsay et al., 1983; Sanderson, 1979; Ez, 2000;
Carreras et al., 2005). This mechanism requires a high angle
between the layers and the shear plane, involving in general a steep
dip of the layers. It has been invoked to explain outcrop-scale folds,
often related to ductile shear zones or thrusts (Sanderson, 1982;
Rattey and Sanderson, 1982; Carreras et al., 2005). Ramsay et al.
(1983) proposed the formation of large recumbent folds in the
Helvetic nappes by this deformation type; these authors suggest
that the folds formed in the frontal culmination wall of the nappe,
where the layers had reached a substantial dip before the devel-
opment of the recumbent folds. On the other hand, Dietrich and
Casey (1989) used a combination of simple shear and pure shear,
with the latter decreasing towards the external parts of the belt, to
explain the same folds. Treagus (1999) also used a combination of
simple shear and pure shear to explain the evolution of the Tay
nappe in the Central Highlands of Scotland. Hudleston (1977), by
observation of somewhat similar recumbent folds in glaciers, sug-
gested that these structures can form by superimposition, under
influence of gravity, of a homogeneous simple shear on prior gentle
waves. This author also suggested that recumbent folds in orogenic
belts may form in an analogous manner. Nonetheless, the folds
obtained for this mechanism require a huge superposed strain to
give rise to tight or isoclinal recumbent folds similar to those
common in orogenic belts.

Simulation of recumbent folds with ‘FoldModeler’ permits the
kinematic analysis of these interesting structures. Although a rota-
tional deformation is necessary to explain the asymmetry and
vergence of large recumbent folds, these are difficult to explain in
a simple shear regime, because their development would require
high original dip of the layers or huge strains. Nonetheless, the
superimposition of a combination of simple shear and irrotational
strain on pre-existing buckle folds can enhance the recumbent
character of folds. A graphical representation of the axial surface
dip against the major principal stretch is shown in Fig. 8 for simple
shear and a simultaneous combination of simple shear and pure
shear (sub-simple shear; De Paor, 1983; Simpson and De Paor,
1993), in which the major semi-axis of the strain ellipse of the
pure shear component is the square root of the major semi-axis of
the global strain ellipse. Each curve corresponds to a specific dip of
the axial surface of the fold prior of the homogeneous strain
superimposition. From this figure it is apparent that the develop-
ment of a recumbent fold by superimposition of sub-simple shear
on a buckle fold requires much less strain than by superimposition
of simple shear. The modelled folds of Fig. 5 illustrate this assertion.



Fig. 7. Example of fit of a natural fold using ‘FoldModeler’. a) Syncline developed in Eocene sandstones and lutites (near Isaba, Navarra, Spain; southern part of the western
Pyrenees; looking to the west). b) Superimposition of the theoretical fold on the natural fold. The fold has been rotated to have its coordinate axes superposed on those of the
numerical fold. Details of the modelling are given in the text. c) and d) Comparison of qea curves for the numerical fold (red line) with the data of the natural fold (black points). e)
Comparison of the Ramsay’s classification for the theoretical (red line) and the natural fold (black points).(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Variation of the axial surface dip (b) of a fold against the major principal stretch
ð
ffiffiffiffiffi
l1

p
Þ for simple shear (gray curves) and for a simultaneous combination of pure shear

and simple shear in which the major semi-axis of the strain ellipse of the pure shear
component is the square root of the major semi-axis of the global strain ellipse (black
curves).
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The kinematic modelling of recumbent folds suggests that their
development involves the following requirements: a) a tectonic
regime with a rotational bulk deformation with sub-horizontal
simple shear components inducing buckling in amultilayer dipping
in the same sense as the shear direction; b) superimposition of
a deformation of homogeneous tendency consisting of a combina-
tion of simple shear, with a sub-horizontal shear direction, and
irrotational strain, with a sub-vertical direction of maximum
shortening. The irrotational strain component must increase with
time during the complete process, since in the stage a) this
component would prevent the buckling, except in cases with very
high initial dip, and the absence of irrotational strain in the stage b)
would prevent the development of recumbent folds except in cases
with very high dip or strain. A consequence of this mechanism is
the appearance of an extensional sub-horizontal deformation. The
irrotational strain component can increase with the fold develop-
ment as a consequence of the increasing influence of the gravity
with the tectonic superimposition associated with the fold devel-
opment. This evolutionary model has been used to explain the
development of the recumbent fold of the Courel (Variscan belt,
NW Spain), in which the existence of components of irrotational
strain with sub-vertical maximum shortening allowed (Fernández
et al., 2007) to explain the presence of a stretching lineation in
the axial direction of the fold. This lineation cannot be explained
only by simple shear with shear direction perpendicular to the axial
direction.



J. Aller et al. / Journal of Structural Geology 32 (2010) 1170e11841180
9. Discussion and conclusions

Determining the kinematic mechanisms that gave rise to
a specific fold is a difficult problem because we only can know the
final result of the deformation process. Therefore, attentionmust be
paid to any feature that gives clues regarding the history of the
deformation, especially the cleavage distribution. Unfortunately,
these indications are often insufficient to determine the strain state
inside the folded layers and the kinematic mechanisms that gave
rise to the folding. Therefore, it is necessary to construct mathe-
matical or experimental models or simulations that can shed light
on the rules of folding development. Mathematical analysis of
folding kinematics has allowed us constructing a new version or
the ‘FoldModeler’ software that can be used for the forward or
inverse modelling of asymmetric folds.

In the forward modelling, there are countless possible combi-
nations of kinematic mechanisms that are capable of producing
asymmetric folds. Experimental studies suggest that the fold
asymmetry induced during buckling is not large, even in a non-
coaxial bulk deformation context (Ghosh, 1966; Anthony and
Wickham, 1978; Manz and Wickham, 1978; Carreras et al., 2005).
Therefore, the main source of asymmetry must be produced during
the kinematic amplification due to the superimposition of
a homogeneous or nearly homogeneous strainwith the direction of
maximum finite stretch oblique to the axial trace. Hinge point
migration is an important consequence of this deformation that
strongly influences the strain distribution in the folded layer.
Simple shear or a combination of simple shear and irrotational
strain, with a principal direction coincident with the shear direc-
tion, seem to be common deformations superposed on active
folding in natural asymmetric folds (Sanderson, 1979, 1982;
Ramsay, 1980; Ramsay et al., 1983; Ridley and Casey, 1989; Casey
and Dietrich, 1997; Treagus, 1999; Harris et al., 2002; Alsop and
Carreras, 2007). In both cases, if the pre-existing buckle folds are
parallel, the resulting fold is class 1C, comparable to the folds
formed by symmetric flattening, although with different relative
length of limbs and a thickness asymmetry. In general, for the same
final superposed strain, folds formed by a simultaneous combina-
tion of simple shear and irrotational strain, with the maximum
shortening perpendicular to the shear direction, have a gentler
dipping axial plane and a thicker forelimb than those formed by
simple shear or by a simultaneous combination of simple shear and
irrotational strain with the maximum shortening along the shear
direction.

In the inverse modelling, a specific natural fold can be fitted by
folds formed by infinite combinations of kinematic mechanisms,
which produce the same final form and only differ in the rotational
component. Regional geological constraints, like the fold vergence
or the deformation regime, or vorticity gauges (e.g., quartz fabrics
measured around a fold) can restrict the number of possible fits.
The fact that a rotational deformation composed of a simultaneous
combination of simple shear and pure shear can be analytically
obtained as result of an irrotational strain plus a rigid rotation
allows establishing an equation whose analysis makes the fitting
easier.

Application of the ‘FoldModeler’ software to understanding
large recumbent folds suggests some interesting conclusions.
Development of these folds requires a rotational deformation
regimewith a sub-horizontal simple shear component. The original
layering must be oblique to the shear direction and must have an
initial dip direction in the shear direction. Under these conditions,
a buckle fold must be developed under the rotational regime. This
fold must subsequently undergo a kinematic amplification as
a consequence of the superimposition of a combination of simple
shear and irrotational strain, which is probably a sub-simple shear
in many cases. Superimposition of an irrotational strain component
at this stage allows the development of recumbent folds with
application of much less strain thanwith superimposition of simple
shear only. The amount of the irrotational strain component
probably increases with the development of the fold due to an
increasing influence of gravity as a consequence of the tectonic
superimposition of rocks.

Kinematic models of folding developed numerically by
computer are obviously simple approaches to the complexity of the
geological reality. The models used here are 2D geometrical models
developed in a single layer, not considering therefore the complex
kinematic mechanisms derived from the mechanical anisotropies
and heterogeneities of a multilayer or thermal heterogeneities as
those considered by Bucher (1956). The models do not incorporate
the effects of the existence of fractures or other elements either,
such as blocks that can act as a buttress to enhance the folding and
favour the development of recumbent folds (Bucher, 1956, 1962;
Vacas Peña and Martínez Catalán, 2004). Despite the limitations
of the mathematical models and of the folds produced numerically
with ‘FoldModeler’, this program allows forward and inverse
modelling, and due to its analytical character, it allows analysis of
the deformation components that give rise to a specific numerical
or a natural fold. In addition, this program also allows a geomet-
rical-kinematic basis to be established for the subsequent
mechanical modelling of folds.
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Appendix A. Material deformation gradient of simultaneous
simple shear and irrotational strain

To represent analytically the simultaneous effect of an irrota-
tional strain and a simple shear, we consider an elemental trans-
formation with matrix:

~M ¼ ~B~A; ~A ¼
�
1þ ~a 0
0 1þ ~b

�
; ~B ¼

�
1 ~g
0 1

�
: (A-1)

This transformation is iterated a very large number of times. So,
we obtain the matrix G:

G ¼ lim
n/N

�
~M
�n

(A-2)

When n tends to infinity, the matrix ~M ¼ ~B~A must be close to the
unit matrix for the matrix G to be finite. In other words, the
matrices ~A and ~B must be of the form:

~A ¼
�
1þ an 0

0 1þ bn

�
; ~B ¼

�
1 gn
0 1

�
; (A-3)

where
lim
n/N

an ¼ 0; lim
n/N

bn ¼ 0; lim
n/N

gn ¼ 0: (A-4)

More specifically, the limits

lim
n/N

nan; lim
n/N

nbn; lim
n/N

ngn (A-5)

have to be finite. Without loss of generality, we can write:
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an ¼ a
n
; bn ¼ b

n
; gn ¼ g

n
: (A-6)
Now, the matrices ~A and ~B become:

~A ¼ I þ 1
n
A; ~B ¼ I þ 1

n
B (A-7)

With

A ¼
�
a 0
0 b

�
; B ¼

�
1 g
0 1

�
: (A-8)

Then, the elementary deformation is:

~M ¼
�
I þ 1

n
B
��

I þ 1
n
A
�

¼ I þ 1
n
ðAþ BÞ þ 1

n2
BA: (A-9)

The non-commutative part of this product, i.e., the term BA, is
preceded by the factor 1/n2, which is smaller than the commutative
part (A þ B)/n, and it does not affect the value of the power ~Mn

when n/N. Hence, we have the following equation for thematrix
G:

G ¼ lim
n/N

�
I þ 1

n
C
�n

; where C ¼ Aþ B: (A-10)

The last equation of G coincides with the usual definition of the
exponential of a matrix:

expC :¼ lim
n/N

�
I þ 1

n
C
�n

; G ¼ expC; C ¼
�
a g
0 b

�
:

(A-11)

This results synthesizes analytically the geometrical idea of infi-
nitely small infinite transformations. Matrix C is diagonalizable and
it can be exponentiated without difficulty. The result is (Moler and
Van Loan, 1978):

G ¼
 
k1 g k1�k2

lnðk1=k2Þ
0 k2

!
; k1 ¼ expa; k2 ¼ expb: (A-12)

Appendix B. Coordinate change associated to a migration of
the hinge point

In the coordinate system {O,B}, with origin O and basis of
orthonormal basis B ¼ ðbE1;

bE2Þ (Fig. B-1a), the conic section that
describes the guideline before the homogeneous strain has the
equation:

RTGR� 2KR ¼ 0; (B-1)

where

G ¼
�
1 0
0 1� E2

�
; quadratic form matrix; (B-2)

R ¼
�
X
Y

�
; matrix; (B-3)

K ¼ ð0 A Þ; linear form matrix: (B-4)

Here, E is the eccentricity and A the scale factor.
Let us consider now the homogeneous strain given by:

R ¼ HR0; (B-5)
where R0 is thematrix of the coordinates of the deformed point, and
H�1 is the spatial deformation gradient matrix. The equation of the
deformed guideline, also a conic, in the same coordinate system B,
is

R0TG0R0 � 2K 0R0 ¼ 0; (B-6)

with G0 ¼ HTGH and K0 ¼ KH.
Let us consider now a new orthonormal basis b ¼ (e1,e2) (Fig. B-

1b). In the new coordinate system {O,b} the deformed conic has the
equation:

~R
T ~G0

~R� 2~K0
~R ¼ 0; (B-7)

where ~G0 ¼ PTG0P; ~K0 ¼ K 0P; R0 ¼ P~R, and P is the base change
matrix.

We choose the new base b formed by the orthonormal eigen-
vectors of G0, so ~G0 is a diagonal matrix

~G0 ¼
�
g1 0
0 g2

�
; with g1 > g2; (B-8)

The quotient g2/g1 is related to the eccentricity of the deformed
guideline:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2=g1

p
: (B-9)

Making ~G ¼ ~G0=g1 and ~K ¼ ~K0=g1, we obtain from (A-7)

~R
T ~G~R� 2~K~R ¼ 0: (B-10)

To obtain the linear part in equation (B-10) in the simple form in
equation (B-4), we change the coordinate origin, so the new origin
o, with position vector Ro (Fig. B-1b), coincides with the hinge point
of the deformed guideline. Then, the new position vector R of
a point of the deformed guideline is related to the old vector ~R by

~R ¼ Ro þ R: (B-11)

Introducing this equation in (B-10), we obtain

RT ~GR� 2
�
~K � RTo ~G

�
R ¼ 0; (B-12)

where Ro must satisfy equation (B-10), that is,

Ro~GRo � 2~KRo ¼ 0: (B-13)

The minuend in equation (B-12) has the same form of the one in
equation (B-1). Let us force that the subtrahend in both equations
has the same form, that is,

~K � RTo ~G ¼ ð0 a Þ; (B-14)

where a is the new scale factor.
Equations (B-13) and (B-14) form a system of three scalar

equations that allows to obtain Ro and a. Solving it, we have

x0 ¼ ~K1; (B-15)

y0 ¼ g1~K2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21

~K
2
2 þ g1g2 ~K

2
1

q
g2

; (B-16)

a ¼ ~K2 � y0
g2
g1

; (B-17)

where ~K ¼ ð ~K1
~K2 Þ and
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Ro ¼
�
x0
y0

�
:

Fig. B-1. Coordinate change associated with hinge migration due to superimposition
of a general homogeneous strain on a pre-existing fold.

Appendix C. Analysis of equation (4) ðr+f [ gÞ

1. Preliminary definitions and notation

Let b ¼ ðbe1; be2Þ be an orthonormal basis defined in a fold
(Fig. C-1a). An orthonormal basis rotated an angle z with respect to
the basis b (Fig. C-1b) is designated by

bz ¼
�bez1; bez2�:

We can observe that b0 ¼ b.
Let us define an irrotational strain gradient, f, in the directions of

the basis ba. Its matrix F in the basis ba is:

F ¼ ðf Þba ¼
�

l 0
0 m

�
; (C-1)

where the symbol ðf Þba represents the matrix of the lineal operator
f in the basis ba.

Let g be the gradient of a simultaneous superimposition of
simple shear and irrotational strain in the directions of the basis bq.
Accordingly with Appendix A, its matrix is:

G ¼ ðgÞbq ¼
 
k1 g k1�k2

lnðk1=k2Þ
0 k2

!
: (C-2)

Let r be the gradient of a rotation defined by angle b. Its matrix R is
independent of the considered orthonormal basis.

R ¼ ðrÞ: ¼
�
cos b �sin b
sin b cos b

�
: (C-3)

2. Approach to the problem

We must analyse under what conditions we can factorize the
gradient g, defined in (C-2), with parameters q, k1, k2 and g, as
a product of the rotation r, with parameter b, and the irrotational
strain f, with parameters a, l and m. In other words, we want to
know how the parameters q, k1, k2, g, b, a, l andm are related, so that
the following composition relation is accomplished:

r+f ¼ g: (C-4)
This operational equation becomes a matrix equation when we

choose a specific vector basis. Taking the basis ba, we have

ðrÞbaðf Þba ¼ ðgÞba : (C-5)
In agreement with definitions (C-1) and (C-3), the left-hand side
is the matrix

L ¼ RF; (C-6)

L ¼
�
lcos b �msin b
lsin b mcos b

�
: (C-7)

For the matrix of the second member of (C-5) we have:

ðgÞba ¼ QTðgÞbqQ ¼ QTGQ ; (C-8)

where Q is the matrix of basis change,

Q ¼
�

cos q0 sin q0

�sin q0 cos q0
�
; q0 ¼ q� a: (C-9)

Now the equation (C-5) has the form

L ¼ QTGQ : (C-10)

Be h the area change of the transformation g:

h ¼ det g ¼ det G ¼ k1k2:

Taking into account equation (C-10), we also have:

h ¼ detðrf Þ ¼ ðdet rÞðdet f Þ ¼ 1det F ¼ lm:

Hence, we have the double relation

lm ¼ k1k2 ¼ h: (C-11)
3. Some necessary conditions

Equation (C-10) shows that L and G are similar matrices and
therefore they have the same characteristic polynomial. If we
identify the corresponding equations:

ðLÞ l2 �
�
lþ h

l

�
cos blþ h ¼ 0; (C-12)

ðGÞ l2 � ðk1 þ k2Þlþ h ¼ 0; (C-13)

We obtain the relation:�
lþ h

l

�
cos b ¼ k1 þ k2 ¼ 2u: (C-14)

The eigenvalues, common for the two matrices, are:

l1 ¼ uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � h

p
; l2 ¼ u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � h

p
: (C-15)

For the normal case, u >
ffiffiffi
h

p
, we have l1 s l2, but for the

degenerate case, u ¼
ffiffiffi
h

p
, l1 ¼ l2.

In an analogous way, as the matrices FTF and GTG are similar,

GTG ¼ Q
�
FTF

�
QT ;

their characteristic equations:

�
FTF

�
l2 �

 
l2 þ h2

l2

!
lþ h2 ¼ 0; (C-16)

�
GTG

�
l2 �

 
k21 þ k22 þ

�
g

k1 � k2
lnðk1=k2Þ

�2
!
lþ h2 ¼ 0; (C-17)

must be identical. Hence, we have the relation:
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l2 þ h2

l2
¼ k21 þ k22 þ

�
g

k1 � k2
lnðk1=k2Þ

�2

: (C-18)

The eigenvectors of L, of matrices Vi (i ¼ 1, 2), verify

LVi ¼ liVi; (C-19)

where the li have been defined in (C-12). From (C-19) we obtain:

Vi ¼
�
Ai
Bi

�
;

�
Ai ¼ hsin b

Bi ¼ lðlcos b� liÞ ; (C-20)

The eigenvectors Wi of G,

GWi ¼ liWi; i ¼ 1;2; (C-21)

are:

Wi ¼ QVi; (C-22)

From (C-20) we have:

Wi ¼
�
Ci
Di

�
;

�
Ci ¼ Aicos q

0 þ Bisin q0;
Di ¼ �Aisin q0 þ Bicos q

0 : (C-23)
4. Sufficient conditions

Here we will obtain the conditions that the parameters of the
transformations must accomplish to satisfy the fundamental rela-
tion (C-4).

We assume in this section that u >
ffiffiffi
h

p
(normal case). Since the

eigenvalues are different, the associated eigenvectors, and their
matrices V1 and V2, are linearly independent. In these conditions,
the matrix equality (C-10) is equivalent to the two vector relations:

QTGQVi ¼ LVi; i ¼ 1;2: (C-24)

Using the notation (C-23), equation (C-21) takes the form: 
k1 g k1�k2

lnk1�lnk2
0 k2

!�
Ci
Di

�
¼ li

�
Ci
Di

�
: (C-25)

From this equation, we obtain the relations searched:

li ¼ ki; i ¼ 1;2; (C-26)

tan q0 ¼ lðlcos b� k1Þ
hsin b

; (C-27)

g ¼ cos
�
q0 � 3

	
sin
�
q0 � 3

	lnk1
k2
; (C-28)

where

tan 3 ¼ lðlcos b� k2Þ
hsin b

: (C-29)
5. Degenerate case

In agreement with equation (C-15), for the caseu ¼
ffiffiffi
h

p
, we

have:

l1 ¼ l2 ¼
ffiffiffi
h

p
; (C-30)
k1 ¼ k2 ¼ k ¼
ffiffiffi
h

p
; (C-31)

G ¼ lim
k2/k1

 
k1 g k1�k2

lnk1�lnk2
0 k2

!
¼ k

�
1 g
0 1

�
: (C-32)

The rotation angle b is determined from equation (C-14):

cos b ¼ 2
ffiffiffi
h

p

lþ h
l

: (C-33)

The system (C-16) takes now the form:

ffiffiffi
h

p �
1 g
0 1

��
Ci
Di

�
¼

ffiffiffi
h

p �
Ci
Di

�
:

From this equation we obtain: q ¼ q0 þ a,

tan q0 ¼
l
�
lcos b�

ffiffiffi
h

p �
hsin b

(C-34)

The value of g is obtained from thematrix G, which can be found
from equation (C-10),

G ¼ QRFQT : (C-35)

This choice of G guarantees the fulfillment of equation (C-4).

Fig. C-1. (a) Orthonormal basis, b ¼ ðbe1; be2Þ, defined in a fold. (b) Orthonormal basis,
bz ¼ ðbez1; bez2Þ, rotated an angle z with respect to the basis defined in the fold.
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